Skip to content

Structures and Small Molecule Inhibitors in Cellular and Animal Models

My WordPress Blog

Menu
  • Sample Page
Menu

The stable FOXP2-knockdown MCF-7 cells were selected and harvested for protein and total RNA preparation

Posted on February 8, 2022 by president2010

The stable FOXP2-knockdown MCF-7 cells were selected and harvested for protein and total RNA preparation. that FOXA2 inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. In this study, by identifying FOXA2-interacting proteins from FOXA2-pull-down cell lysates with Mass Spectrometry Analysis, we found that FOXP2 interacted with FOXA2. After confirming the conversation between FOXP2 and FOXA2 through Co-IP and immunofluorescence assays, we showed a correlated expression of FOXP2 and FOXA2 existing Rabbit Polyclonal to LMTK3 in clinical breast cancer samples. The overexpression of FOXP2 attenuated the mesenchymal phenotype whereas the stable knockdown of FOXP2 promoted EMT in breast cancer cells. Even though FOXP2 was believed to act as a transcriptional repressor in most cases, we found that FOXP2 could activate the expression of tumor suppressor PHF2. Meanwhile, we also found that FOXP2 could endogenously bind to the promoter of E-cadherin and KDU691 activate its transcription. This transcriptional activity of FOXP2 relied on its interaction with FOXA2. Furthermore, the stable knockdown of FOXP2 enhanced the metastatic capacity of breast cancer cells (11). Thus, we intend to identify FOXA2-interacting proteins from FOXA2-pulled down cell lysates with Mass Spectrometry Analysis in current studies. Interestingly, transcription factor FOXP2, another member of the KDU691 FOX transcription factor family, has been found to interact with FOXA2. The FOX transcription factor family is widely distributed in various eukaryotes and contains more than 40 mammalian members, which possess a conserved DNA binding domain (DBD) known as Forkhead box/winged helix domain (12). The chromatin immune-precipitation experiment identifies the candidate FOXP2-binding sequence CAAATT as the most probable target for FOXP2 binding in chromatin (13). FOXP2 has been shown to both promote and more often inhibit the transcription of target genes (14). FOXP2 can interact with the co-repressors, KDU691 such as C-terminal binding protein-1 (CtBP-1) that mediates transcriptional repression primarily through KDU691 recruitment of histone deacetylases HDAC1/2 (15), to confer its transcriptional repressive properties (16, 17). An increasing amount of evidence supports the repressor role of FOXP2 upon the transcription of its target genes, such as SRPX2/uPAR complex (18) and DLL3 (19), which are involved in oncogenic progression of different types of cancers. On the other hand, FOXP2 has also been reported to activate the transcription of genes, such as the protein-tyrosine kinase SYK that is described as a tumor suppressor in breast cancer cells (20). This transcriptional activation of FOXP2 is often explained by the differential affinity of FOXP2 for DNA binding sites or by the cofactors that interact with FOXP2. While FOXP2 has first been reported to participate in speech and language development and neuronal development (21, 22), the expression of FOXP2 is observed in multiple adult tissues, such as heart, lung, liver, ovaries, and gut (23, 24). A growing number of evidences have linked FOXP2 to multiple cancers and its dysregulation may play a main role throughout cancer initiation and progression (25), even though it may act as either a tumor-suppressor or a tumor-stimulator depending on the type of cancers studied. For example, its expression is down-regulated in breast cancer (26), hepatocellular carcinoma (27), and gastric cancers (28), in which FOXP2 plays roles as a tumor-suppressor. Conversely, overexpressed FOXP2 has been found in lymphomas (29), neuroblastomas (30), and prostate cancers (31), implicating a pro-oncogenic role of FOXP2 in these cancers. These differences may suggest alternative and tissue-specific roles for FOXP2 as a tumor suppressor or as an oncogene, depending on activated signaling pathways in certain types of cancer. The strong evidence of FOXP2 as a tumor-suppressor role comes from a breast cancer study, in which silencing FOXP2 through miRNA-mediated FOXP2 repression promotes cancer stem cell traits and metastasis in breast cancer cells (32). In the current study, we identified that FOXP2 interacted with FOXA2, and the expression of FOXP2 was strongly correlated with the epithelial phenotype of breast cancer cells. The stable knockdown of FOXP2 expression promoted the mesenchymal phenotype of KDU691 breast cancer cells, while the overexpression of FOXP2 inhibited the EMT of breast cancer cells. We confirmed that FOXP2 alone could activate the expression of tumor suppressor PHF2. Meanwhile, FOXP2 could endogenously bind to the promoter of E-cadherin and activate E-cadherin transcription, relying on its interaction with FOXA2..

Recent Posts

  • This study was registered with the Japan Pharmaceutical Information Center (identifier: JapicCTI-142548)
  • Childhood maltreatment is associated with an genotype-dependent demethylation of a distal enhancer, resulting in enhanced FKBP5 expression and reduced GR function (Klengel et al
  • The activity for wild-type ER in the absence of ligand was taken as one, with all other activities shown relative to this
  • Study Subjects and Tissue Samples In the present study, a total of 56 histologically confirmed UCB patients, who were treated at Chiayi Christian Hospital (Chiayi City, Taiwan) from August 2006 to May 2007, were retrospectively analyzed
  • JR acquired the info, revised and wrote the manuscript, and helped to execute the statistical evaluation

Recent Comments

  1. A WordPress Commenter on Hello world!

Archives

  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021

Categories

  • Acetylcholine ??7 Nicotinic Receptors
  • Acetylcholine Nicotinic Receptors
  • Acyltransferases
  • Alpha1 Adrenergic Receptors
  • Angiotensin Receptors, Non-Selective
  • APJ Receptor
  • Calcium Channels
  • Carrier Protein
  • cMET
  • COX
  • DAT
  • Decarboxylases
  • Dipeptidyl Peptidase IV
  • DP Receptors
  • FFA1 Receptors
  • H1 Receptors
  • HDACs
  • Hsp90
  • IGF Receptors
  • LXR-like Receptors
  • Miscellaneous Glutamate
  • Neurokinin Receptors
  • Nicotinic Acid Receptors
  • Nitric Oxide, Other
  • NO Synthase, Non-Selective
  • Non-selective Adenosine
  • Nucleoside Transporters
  • Opioid, ??-
  • Oxidative Phosphorylation
  • p70 S6K
  • PI 3-Kinase
  • Platelet-Activating Factor (PAF) Receptors
  • Potassium (KV) Channels
  • Potassium Channels, Non-selective
  • Prostanoid Receptors
  • Protein Ser/Thr Phosphatases
  • PTP
  • Retinoid X Receptors
  • Serotonin (5-ht1E) Receptors
  • Shp2
  • Sigma1 Receptors
  • Signal Transducers and Activators of Transcription
  • Sirtuin
  • Syk Kinase
  • T-Type Calcium Channels
  • Ubiquitin E3 Ligases
  • Ubiquitin/Proteasome System
  • Uncategorized
  • Urotensin-II Receptor
  • Vesicular Monoamine Transporters
© 2023 Structures and Small Molecule Inhibitors in Cellular and Animal Models | Powered by Minimalist Blog WordPress Theme